Math Exam 2

Algebraic equations: solutions or classification

1a. Solve 4(x+2)6(1x)=624(x+2) – 6(1-x) = 62

  • Expand:

4x+86+6x=624x + 8 – 6 + 6x = 62

  • Combine like terms:

10x+2=6210x + 2 = 62

  • Solve:

10x=60x=610x = 60 \Rightarrow x = 6

1b. Solve 5x+32x=4+10x+77x5x + 3 – 2x = -4 + 10x + 7 – 7x

  • Simplify both sides:

LHS: 3x+3,RHS: 3x+3\text{LHS: } 3x + 3,\quad \text{RHS: } 3x + 3

  • Conclusion: Identity; true for all real xx.

1c. Solve 7(x2)3x=4x7(x-2) – 3x = 4x

  • Expand and simplify:

7x143x=4x4x14=4x7x – 14 – 3x = 4x \Rightarrow 4x – 14 = 4x

  • Subtract 4x4x from both sides:

14=0-14 = 0

  • Conclusion: No solution (contradiction).

1d. Solve 8x+t4=6(xt)8x + t – 4 = 6(x – t)

  • Expand RHS:

8x+t4=6x6t8x + t – 4 = 6x – 6t

  • Collect terms in xx:

2x+7t4=02x=47t2x + 7t – 4 = 0 \Rightarrow 2x = 4 – 7t

  • Solve:

x=47t2x = \frac{4 – 7t}{2}

Rates: scoring averages

2a. Points per minute

  • Compute:

3240=0.8 points per minute\frac{32}{40} = 0.8 \text{ points per minute}

2b. Minutes per point

  • Compute:

4032=1.25 minutes per point\frac{40}{32} = 1.25 \text{ minutes per point}

Linear equation forms

3. Three of the five common forms

  • Slope–intercept form: y=mx+by = mx + b
  • Point–slope form: yy1=m(xx1)y – y_1 = m(x – x_1)
  • Standard form: Ax+By=C
  • Karen’s altitude: rate of change analysis
  • 4a. Interval of fastest increase
  • Compute slopes over 15-minute intervals:
    • 0–15: 68054015=9.3\frac{680 – 540}{15} = 9.\overline{3}
    • 15–30: 164068015=64\frac{1640 – 680}{15} = 64
    • 30–45: 2000164015=24\frac{2000 – 1640}{15} = 24
    • 60–75: 00
    • 75–90: 220018001526.67\frac{2200 – 1800}{15} \approx 26.67
  • Conclusion: Fastest increase from 15 to 30 minutes.
  • 4b. Average rate of change during fastest increase
  • Compute:
  • 164068015=64 ft/min\frac{1640 – 680}{15} = 64 \text{ ft/min}
  • 4c. Interval of fastest decrease
  • Check decreasing intervals:
    • 45–60: 1800200015=13.3\frac{1800 – 2000}{15} = -13.\overline{3}
    • 90–105: 1600220015=40\frac{1600 – 2200}{15} = -40
    • 105–120: 42016001578.67\frac{420 – 1600}{15} \approx -78.67
  • Conclusion: Fastest decrease from 105 to 120 minutes.
  • Lines: slopes, intercepts, and factoring
  • 5a. Slope and intercept for y5=3(x+2)y – 5 = 3(x + 2)
  • Rewrite:
  • y=3x+6+5=3x+11y = 3x + 6 + 5 = 3x + 11
  • Slope: m=3m = 3
  • Y-intercept: b=11b = 11
  • 5b. Slope and intercept for y=x+7y = -x + 7
  • Slope: m=1m = -1
  • Y-intercept: b=7b = 7
  • 6a. Factor 3y+9x3y + 9x
  • Common factor: 3(y+3x)
  • 6b. Factor 14ab+28ac14ab + 28ac
  • Common factor: 14a(b+2c)
  • Writing linear equations from intercepts or slope
  • 7a. Line with xx-intercept 5-5 and yy-intercept 2-2
  • Points: (5,0)(-5, 0) and (0,2)(0, -2)
  • Slope:
  • m=200(5)=25m = \frac{-2 – 0}{0 – (-5)} = -\frac{2}{5}
  • Equation: y=−25x−2
  • 7b. Line with slope 12\frac{1}{2} and yy-intercept 44
  • Equation: y=12x+4
  • Polynomial names, products, and factoring
  • 8. Name by degree and number of terms
  • a) x3+x+3x^3 + x + 3: Cubic trinomial
  • b) y1y – 1: Linear binomial
  • c) d5d^5: Quintic monomial
  • d) 4x23x+124x^2 – 3x + 12: Quadratic trinomial
  • 9. Product (x+3)(x1)(x5)(x + 3)(x – 1)(x – 5)
  • First multiply: (x+3)(x−1)=x2+2x−3
  • Then: (x2+2x−3)(x−5)=x3−3×2−13x+15
  • 10a. Factor x28x+16x^2 – 8x + 16
  • Perfect square: (x−4)2
  • 10c. Factor 4x2364x^2 – 36
  • Difference of squares: 4(x2−9)=4(x−3)(x+3)
  • Completing the square and solving
  • 11. Solve x24x+4=12x^2 – 4x + 4 = 12
  • Recognize square:
  • (x2)2=12(x – 2)^2 = 12
  • Take square roots:
  • x2=±12=±23x – 2 = \pm \sqrt{12} = \pm 2\sqrt{3}
  • Solutions:
  • x=2±23x = 2 \pm 2\sqrt{3}
  • Solution set: {223,  2+23}\{\,2 – 2\sqrt{3},\; 2 + 2\sqrt{3}\,\}
  • Rational numbers
  • 12. Definition
  • Rational number: A number expressible as pq\frac{p}{q} with integers p,qp, q and q0q \neq 0; its decimal expansion terminates or repeats.
  • Work rate word problem
  • 13a. Expressions for number solved over time
  • Let tt be time in hours since starting:
    • Katy: K(t)=3+26tK(t) = 3 + 26t
    • Timmy: T(t)=8+20tT(t) = 8 + 20t
  • 13b. Number solved in 30 minutes
  • Use t=0.5t = 0.5:
  • K(0.5)=3+26(0.5)=16,T(0.5)=8+20(0.5)=18K(0.5) = 3 + 26(0.5) = 16,\quad T(0.5) = 8 + 20(0.5) = 18
  • 13c. Time until equal and how many equations that is
  • Set equal:
  • 3+26t=8+20t6t=5t=56 hours=50 minutes3 + 26t = 8 + 20t \Rightarrow 6t = 5 \Rightarrow t = \frac{5}{6} \text{ hours} = 50 \text{ minutes}
  • Number solved then:
  • K ⁣(56)=3+26 ⁣(56)=74324.67K\!\left(\frac{5}{6}\right) = 3 + 26\!\left(\frac{5}{6}\right) = \frac{74}{3} \approx 24.67
  • 13d. Who finishes first if each must solve 27 total
  • Katy needs 273=2427 – 3 = 24 more: time =2426=12130.923= \frac{24}{26} = \frac{12}{13} \approx 0.923 hours 55.38\approx 55.38 minutes.
  • Timmy needs 278=1927 – 8 = 19 more: time =1920=0.95= \frac{19}{20} = 0.95 hours 57\approx 57 minutes.
  • Conclusion: Katy finishes first (by about 1.6 minutes).

Leave a comment